Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis

Food Chem. 2012 Jan 1;130(1):24-30. doi: 10.1016/j.foodchem.2011.06.037.

Abstract

Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS-PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: kcat = 343 and 727 s-1, Km = 0.25 and 0.16 mg mL-1, kcat/Km (specificity constant) = 1374 and 4510 mg mL-1 s-1, respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme.

Keywords: Activity staining; Aspergillus niger; Glucoamylase; Purification; Starch hydrolysis.