SCISSORS: practical considerations

J Chem Inf Model. 2014 Jan 27;54(1):5-15. doi: 10.1021/ci400264f. Epub 2013 Dec 16.

Abstract

Molecular similarity has been effectively applied to many problems in cheminformatics and computational drug discovery, but modern methods can be prohibitively expensive for large-scale applications. The SCISSORS method rapidly approximates measures of pairwise molecular similarity such as ROCS and LINGO Tanimotos, acting as a filter to quickly reduce the size of a problem. We report an in-depth analysis of SCISSORS performance, including a mapping of the SCISSORS error distribution, benchmarking, and investigation of several algorithmic modifications. We show that SCISSORS can accurately predict multiconformer similarity and suggest a method for estimating optimal SCISSORS parameters in a data set-specific manner. These results are a useful resource for researchers seeking to incorporate SCISSORS into molecular similarity applications.

Publication types

  • Research Support, American Recovery and Reinvestment Act
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Computational Biology
  • Databases, Chemical*
  • Drug Discovery
  • Drug Evaluation, Preclinical
  • Models, Chemical*
  • Molecular Structure
  • User-Computer Interface