High performance of graphene oxide-doped silicon oxide-based resistance random access memory

Nanoscale Res Lett. 2013 Nov 21;8(1):497. doi: 10.1186/1556-276X-8-497.

Abstract

In this letter, a double active layer (Zr:SiOx/C:SiOx) resistive switching memory device with outstanding performance is presented. Through current fitting, hopping conduction mechanism is found in both high-resistance state (HRS) and low-resistance state (LRS) of double active layer RRAM devices. By analyzing Raman and FTIR spectra, we observed that graphene oxide exists in C:SiOx layer. Compared with single Zr:SiOx layer structure, Zr:SiOx/C:SiOx structure has superior performance, including low operating current, improved uniformity in both set and reset processes, and satisfactory endurance characteristics, all of which are attributed to the double-layer structure and the existence of graphene oxide flakes formed by the sputter process.