Cytogenetic characterization of three Balistoidea fish species from the Atlantic with inferences on chromosomal evolution in the families Monacanthidae and Balistidae

Comp Cytogenet. 2011 May 5;5(1):61-9. doi: 10.3897/compcytogen.v5i1.1141. eCollection 2011.

Abstract

The Tetraodontiformes are the most derived group of teleostean fish. Among other apomorphies, they are characterized by a high degree of fusions or significant bone loss in the head and body. In the early phylogenetic proposals presented for this order, the families Balistidae and Monacanthidae have been unanimously considered to be closely related. Although they have moderate species diversity, they are scarcely known in cytogenetic aspect and chromosomal pattern comparisons between these groups have yet to be established. The species Cantherhines macrocerus (Hollard,1853), Cantherhines pullus (Ranzani, 1842) (Monacanthidae) and Melichthys niger (Bloch, 1786) (Balistidae) were cytogenetically analyzed using conventional (Ag-impregnation, C-banding, CMA3- and DAPI-fluorescence) and molecular (FISH with an 18S rDNA probe) cytogenetic protocols. The karyotypes of all three species were very similar possessing diploid chromosome numbers 2n = 40 and composed exclusively of acrocentric chromosomes. Single NOR-bearing pair as well as positive heterochromatic blocks at pericentromeric regions were identified in the karyotypes of the three species studied. NOR-bearing sites were positively labeled after Ag-impregnation, C-banding, CMA3-fluorescence and FISH with an 18S rDNA probe but were negative after DAPI-fluorescence. Such remarkable shared conspicuous chromosomal characters corroborate either close phylogenetic relationship of these families, previously established by morphological and molecular data, or rather conservative nature of karyotype differentiation processes. The later hypothesis, however, appears less probable due to centric or in tandem fusions documented for another Balistoidea species.

Keywords: Balistoidea; Tetraodontiformes; fish cytogenetics; karyotype evolution.