The human touch: skin temperature during the rubber hand illusion in manual and automated stroking procedures

PLoS One. 2013 Nov 18;8(11):e80688. doi: 10.1371/journal.pone.0080688. eCollection 2013.

Abstract

A difference in skin temperature between the hands has been identified as a physiological correlate of the rubber hand illusion (RHI). The RHI is an illusion of body ownership, where participants perceive body ownership over a rubber hand if they see it being stroked in synchrony with their own occluded hand. The current study set out to replicate this result, i.e., psychologically induced cooling of the stimulated hand using an automated stroking paradigm, where stimulation was delivered by a robot arm (PHANToM(TM) force-feedback device). After we found no evidence for hand cooling in two experiments using this automated procedure, we reverted to a manual stroking paradigm, which is closer to the one employed in the study that first produced this effect. With this procedure, we observed a relative cooling of the stimulated hand in both the experimental and the control condition. The subjective experience of ownership, as rated by the participants, by contrast, was strictly linked to synchronous stroking in all three experiments. This implies that hand-cooling is not a strict correlate of the subjective feeling of hand ownership in the RHI. Factors associated with the differences between the two designs (differences in pressure of tactile stimulation, presence of another person) that were thus far considered irrelevant to the RHI appear to play a role in bringing about this temperature effect.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Female
  • Humans
  • Illusions
  • Male
  • Proprioception
  • Skin Temperature
  • Touch Perception*
  • Touch*
  • Visual Perception
  • Young Adult

Grants and funding

This research was supported by the the HFSP Research Grant (2006) on "Mechanisms of associative learning in human perception", by the Max Planck Society, and by the DFG grant ELAPS: Embodied Latency Adaptation and the Perception of Simultaneity. The authors acknowledge support for the Article Processing Charge by the Deutsche Forschungsgemeinschaft (DFG) and the Open Access Publication Funds of Bielefeld University Library. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.