Towards electrochromic devices having visible color switching using electronic push-push and push-pull cinnamaldehyde derivatives

ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12646-53. doi: 10.1021/am4040009. Epub 2013 Nov 27.

Abstract

A series of symmetric and unsymmetric conjugated azomethines derived from cinnamaldehyde and 2,5-diaminothiophene-3,4-dicarboxylic acid diethyl ester were prepared. The optical, electrochemical, and spectroelectrochemical properties of the electronic push-pull and push-push triads were investigated. Their properties could be tuned contingent on the cinnamaldehyde's electron withdrawing and donating substituents. The push-push symmetric derivative exhibited positive solvatochromism with the absorbance spanning some 31 nm, depending on the solvent polarity. Solvent dependent spectroelectrochemistry was also found for the symmetric push-push azomethine. The color of the neutral state and radical cation spanned 215 nm. The most pronounced color transition of the purple colored material was found in dimethyl sulfoxide (DMSO), where the color bleached with electrochemical oxidation. This was a result of the absorbance shifting into the near infrared (NIR) and not from decomposition of the azomethine. Electrochromic devices with the azomethines possessing desired reversible oxidation and color changes in the visible were fabricated and tested to demonstrate the applicability of these azomethine triads in devices.