Crayfish use of trash versus natural cover in incised, sand-bed streams

Environ Manage. 2014 Feb;53(2):382-92. doi: 10.1007/s00267-013-0197-3. Epub 2013 Nov 19.

Abstract

Historic land use changes and subsequent river channelization created deeply incised, unstable stream channels largely devoid of natural cover throughout the Yazoo River basin, Mississippi, USA. Large trash (e.g., televisions, toilets, car parts) dumped in streams provided shelter for some aquatic fauna. To determine whether trash served as a surrogate for natural cover, I examined crayfish use of both cover types. I sampled crayfishes by kick-seining 2 × 1-m plots in three cover classes: trash, natural cover, and no cover. I captured 415 crayfishes from 136 of the 294 plots. Most crayfishes were in natural cover (253), followed by trash (154), and no-cover (8) plots. Trash use varied by crayfish genus and size. Frequencies of all size classes of Procambarus and of the smallest Cambarus were higher in natural cover than trash. Many of the smallest individuals were found in live root mats. As Cambarus and Orconectes grew, they shifted more toward trash, and the largest Orconectes size class was significantly more abundant than expected in trash. Trash served as "artificial reefs," providing cover for crayfishes and other fauna, but functioned differently than the remaining natural cover. The results confirmed that stream substrate did not provide adequate instream cover for crayfishes in the study area and suggested that high-quality natural cover for large crayfishes was in short supply, at least for some species. Land management that provides for abundant, ongoing input and retention of complex cover, such as trees and live roots, to stream channels should be beneficial for crayfish assemblages.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Astacoidea / physiology*
  • Behavior, Animal
  • Conservation of Natural Resources
  • Environmental Pollution*
  • Mississippi
  • Population Dynamics
  • Rivers*