Dispersion force stabilized two-coordinate transition metal-amido complexes of the -N(SiMe3)Dipp (Dipp = C6H3-2,6-Pr(i)2) ligand: structural, spectroscopic, magnetic, and computational studies

Inorg Chem. 2013 Dec 2;52(23):13584-93. doi: 10.1021/ic402105m. Epub 2013 Nov 18.

Abstract

A series of high spin, two-coordinate first row transition metal-amido complexes, M{N(SiMe3)Dipp}2 {M = Fe (1), Co (2), or Ni (3); Dipp = C6H3-2,6-Pr(i)2} and a tetranuclear C-H activated chromium amide, [Cr{N(SiMe2CH2)Dipp}2Cr]2(THF) (4), were synthesized by reaction of their respective metal dihalides with 2 equiv of the lithium amide salt. They were characterized by X-ray crystallography, electronic and infrared spectroscopy, SQUID magnetic measurements, and computational methods. Contrary to steric considerations, the structures of 1-3 display planar eclipsed M{NSiC(ipso)}2 arrays and short M-N distances. DFT calculations, corrected for dispersion effects, show that dispersion interactions involving C-H-H-C moieties likely stabilize the structures by 21.1-29.4 kcal mol(-1), depending on the level of the calculations employed. SQUID measurements confirm high spin electron configurations for all the complexes and substantial orbital contributions for 1 and 2.