High-temperature damage and acclimation of the photosynthetic apparatus : II. Effect of mono- and divalent cations and pH on the temperature sensitivity of some functional characteristics of chloroplasts isolated from heat-acclimated and non-acclimated bean plants

Planta. 1987 Apr;170(4):478-88. doi: 10.1007/BF00402982.

Abstract

The influence of mono- (K(+)) and divalent (Mg(2+)) cations and protons (pH) on the temperature sensitivity of thylakoid membranes was investigated in three groups of young bean plants (control, heat-acclimated and non-acclimated). Thylakoid-membrane function was monitored by second and millisecond delayed fluorescence and 9-aminoacridine fluorescence quenching. It was established that metal ions at investigated concentrations decreased the thermostability of the photosynthetic parameters - an increase of MgSO4 concentration from 0.1 to 20 mM decreased the temperature of their half-inactivation (T50) by 13°C. At the same time the pH dependence of the thermal stability of these parameters showed a maximum at pH 5.5-6.5. The half-inactivation temperatures of those photosynthetic parameters connected with the ability of the thylakoid membrane to form light-induced proton gradients increased by 6-7°C in the heat-acclimated plants compared with the control. It was assumed that the temperature inactivation of photosynthetic electron transfer and the energization of the thylakoid membrane was determined both by the thermoinduced dissociation of the light-harvesting chlorophyll a/b protein complex from PSII, leading to destruction of the excitation energy transfer to the reaction centres, and by the thermal denaturation of the membrane-protein components. The rate of these processes was probably controlled by the size of the negative surface charge and the viscosity of the thylakoid membrane.