Transport zonation limits coupled nitrification-denitrification in permeable sediments

Environ Sci Technol. 2013;47(23):13404-11. doi: 10.1021/es403318x. Epub 2013 Nov 21.

Abstract

Measurement of biogeochemical processes in permeable sediments (including the hyporheic zone) is difficult because of complex multidimensional advective transport. This is especially the case for nitrogen cycling, which involves several coupled redox-sensitive reactions. To provide detailed insight into the coupling between ammonification, nitrification and denitrification in stationary sand ripples, we combined the diffusion equilibrium thin layer (DET) gel technique with a computational reactive transport biogeochemical model. The former approach provided high-resolution two-dimensional distributions of NO3(-) and (15)N-N2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification-denitrification is severely limited in permeable sediments because the flow and transport field limits interaction between oxic and anoxic pore water. The approach allowed for new detailed insight into subsurface denitrification zones in complex permeable sediments.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Denitrification*
  • Geologic Sediments*
  • Models, Theoretical*
  • Nitrification*
  • Nitrogen / analysis
  • Oxidation-Reduction

Substances

  • Nitrogen