Association of 3-Dimensional Cartilage and Bone Structure with Articular Cartilage Properties in and Adjacent to Autologous Osteochondral Grafts after 6 and 12 months in a Goat Model

Cartilage. 2012 Jul 1;3(3):255-266. doi: 10.1177/1947603511435272.

Abstract

Objective: The articular cartilage of autologous osteochondral grafts is typically different in structure and function from local host cartilage and thereby presents a remodeling challenge. The hypothesis of this study was that properties of the articular cartilage of trochlear autografts and adjacent femoral condyle are associated with the 3-D geometrical match between grafted and contralateral joints at 6 and 12 months after surgery.

Design: Autografts were transferred unilaterally from the lateral trochlea (LT) to the medial femoral condyle (MFC) in adult Spanish goats. Operated and contralateral Non-Operated joints were harvested at 6 and 12 months, and analyzed by indentation testing, micro-computed tomography, and histology to compare (1) histological indices of repair, (2) 3-D structure (articular surface deviation, bone-cartilage interface deviation, cartilage thickness), (3) indentation stiffness, and (4) correlations between stiffness and 3-D structure.

Results: Cartilage deterioration was present in grafts at 6 months and more severe at 12 months. Cartilage thickness and normalized stiffness of Operated MFC were lower than Non-Operated MFC within the graft and proximal adjacent host regions. Operated MFC articular surfaces were recessed relative to Non-Operated MFC and exhibited lower cartilage stiffness with increasing recession. Sites with large bone-cartilage interface deviations, both proud and recessed, were associated with recessed articular surfaces and low cartilage stiffness.

Conclusion: The effectiveness of cartilage repair by osteochondral grafting is associated with the match of 3-D cartilage and bone geometry to the native osteochondral structure.

Keywords: animal models; cartilage repair; grafts; knee; micro-CT.