Properties of nonlinear noise in long, dispersion-uncompensated fiber links

Opt Express. 2013 Nov 4;21(22):25685-99. doi: 10.1364/OE.21.025685.

Abstract

We study the properties of nonlinear interference noise (NLIN) in fiber-optic communications systems with large accumulated dispersion. Our focus is on settling the discrepancy between the results of the Gaussian noise (GN) model (according to which NLIN is additive Gaussian) and a recently published time-domain analysis, which attributes drastically different properties to the NLIN. Upon reviewing the two approaches we identify several unjustified assumptions that are key in the derivation of the GN model, and that are responsible for the discrepancy. We derive the true NLIN power and verify that the NLIN is not additive Gaussian, but rather it depends strongly on the data transmitted in the channel of interest. In addition we validate the time-domain model numerically and demonstrate the strong dependence of the NLIN on the interfering channels' modulation format.

Publication types

  • Research Support, Non-U.S. Gov't