An approximate method for optimum independent culling level selection for n stages of selection with explicit solutions

Theor Appl Genet. 1991 Jul;82(4):457-65. doi: 10.1007/BF00588599.

Abstract

An approximate method with explicit solutions to apply independent culling levels for multiple traits in n-stages of selection was developed. An approximate solution was found for sequentially selected traits. Two assumptions were necessary. The first was to assume that subsequent selection would not appreciably change the mean of traits already selected, and the second was to approximate the variance of a correlated trait in a selected population with an upward biased projection. The procedure was shown to give near optimal results regardless of selection intensity or genetic correlations if phenotypic correlations among traits were low. The procedure gave poor results only for certain sequences of selection when phenotypic correlations were high. However, in those cases good results were obtained using a different sequence of selection. With high correlations, the procedure is recommended only after comparing solutions and expected genetic gain for all sequences of selection. If the expected aggregate gain for the sequence of selection desired is less than that of another order, culling points associated with the optimal ordering must be determined. Genetic gain from use of culling points is independent of order of selection. The procedure is recommended for use with computer programs that attempt to find optimal culling points to reduce computational time and to check results.