The agr function and polymorphism: impact on Staphylococcus aureus susceptibility to photoinactivation

J Photochem Photobiol B. 2013 Dec 5:129:100-7. doi: 10.1016/j.jphotobiol.2013.10.006. Epub 2013 Oct 23.

Abstract

Staphylococcus aureus is an important human pathogen that causes healthcare-associated and community-acquired infections. Moreover, the growing prevalence of multiresistant strains requires the development of alternative methods to antibiotic therapy. One effective therapeutic option may be antimicrobial photodynamic inactivation (aPDI). Recently, S. aureus strain-dependent response to PDI was demonstrated, although the mechanism underlying this phenomenon remains unexplained. The aim of the current study was to investigate statistically relevant correlations between the functionality and polymorphisms of agr gene determined for 750 methicillin-susceptible and methicillin-resistant S. aureus strains and their responses to photodynamic inactivation using protoporphyrin IX. An AluI and RsaI digestion of the agr gene PCR product revealed existing correlations between the determined digestion profiles (designations used for the first time) and the PDI response. Moreover, the functionality of the agr system affected S. aureus susceptibility to PDI. Based on our results, we conclude that the agr gene may be a genetic factor affecting the strain dependent response to PDI.

Keywords: Accessory gene regulator; Gene polymorphism; Photoinactivation; Staphylococcus aureus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics*
  • Deoxyribonucleases, Type II Site-Specific / metabolism
  • Light
  • Methicillin / pharmacology
  • Methicillin-Resistant Staphylococcus aureus / drug effects
  • Methicillin-Resistant Staphylococcus aureus / radiation effects
  • Mutation
  • Polymorphism, Genetic*
  • Protoporphyrins / chemistry
  • Staphylococcus aureus / drug effects
  • Staphylococcus aureus / genetics*
  • Staphylococcus aureus / radiation effects
  • Trans-Activators / genetics*

Substances

  • Agr protein, Staphylococcus aureus
  • Bacterial Proteins
  • Protoporphyrins
  • Trans-Activators
  • protoporphyrin IX
  • endodeoxyribonuclease AluI
  • Deoxyribonucleases, Type II Site-Specific
  • GTAC-specific type II deoxyribonucleases
  • Methicillin