Neuroprotective effects of protocatechuic aldehyde against neurotoxin-induced cellular and animal models of Parkinson's disease

PLoS One. 2013 Oct 18;8(10):e78220. doi: 10.1371/journal.pone.0078220. eCollection 2013.

Abstract

Protocatechuic aldehyde (PAL) has been reported to bind to DJ-1, a key protein involved in Parkinson's disease (PD), and exerts potential neuroprotective effects via DJ-1 in SH-SY5Y cells. In this study, we investigated the neuroprotective pharmacological effects of PAL against neurotoxin-induced cell and animal models of PD. In cellular models of PD, PAL markedly increased cell viability rates, mitochondrial oxidation-reduction activity and mitochondrial membrane potential, and reduced intracellular ROS levels to prevent neurotoxicity in PC12 cells. In animal models of PD, PAL reduced the apomorphine injection, caused turning in 6-OHDA treated rats, and increased the motor coordination and stride decreases in MPTP treated mice. Meanwhile, in an MPTP mouse model, PAL prevented a decrease of the contents of dopamine (DA) and its metabolites in the striatum and TH-positive dopaminergic neuron loss in the substantia nigra (SN). In addition, PAL increased the protein expression of DJ-1 and reduced the level of α-synuclein in the SN of MPTP lesioned mice. PAL also increased the spine density in hippocampal CA1 neurons. The current study demonstrates that PAL can efficiently protect dopaminergic neurons against neurotoxin injury in vitro and in vivo, and that the potential mechanisms may be related to its effects in increasing DJ-1, decreasing α-synuclein and its growth-promoting effect on spine density.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Benzaldehydes / pharmacology*
  • Catechols / pharmacology*
  • Cell Line, Tumor
  • Disease Models, Animal
  • Dopamine / metabolism
  • Dopaminergic Neurons / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neuroprotective Agents / pharmacology*
  • Neurotoxins / adverse effects*
  • Neurotoxins / metabolism
  • Oncogene Proteins / metabolism
  • PC12 Cells
  • Parkinson Disease / drug therapy*
  • Parkinson Disease / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species / metabolism
  • Substantia Nigra / drug effects
  • Substantia Nigra / metabolism
  • alpha-Synuclein / metabolism

Substances

  • Benzaldehydes
  • Catechols
  • Neuroprotective Agents
  • Neurotoxins
  • Oncogene Proteins
  • Reactive Oxygen Species
  • alpha-Synuclein
  • protocatechualdehyde
  • Dopamine

Grants and funding

This work was supported by National Natural Science Funds of China (Grant No. 81202937, No. 30973889) and a Grant from Significant new drugs creation Five-Year plan special science and Technology Major (No. 2012ZX09103201-042). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.