Reverse-engineering post-transcriptional regulation of gap genes in Drosophila melanogaster

PLoS Comput Biol. 2013 Oct;9(10):e1003281. doi: 10.1371/journal.pcbi.1003281. Epub 2013 Oct 31.

Abstract

Systems biology proceeds through repeated cycles of experiment and modeling. One way to implement this is reverse engineering, where models are fit to data to infer and analyse regulatory mechanisms. This requires rigorous methods to determine whether model parameters can be properly identified. Applying such methods in a complex biological context remains challenging. We use reverse engineering to study post-transcriptional regulation in pattern formation. As a case study, we analyse expression of the gap genes Krüppel, knirps, and giant in Drosophila melanogaster. We use detailed, quantitative datasets of gap gene mRNA and protein expression to solve and fit a model of post-transcriptional regulation, and establish its structural and practical identifiability. Our results demonstrate that post-transcriptional regulation is not required for patterning in this system, but is necessary for proper control of protein levels. Our work demonstrates that the uniqueness and specificity of a fitted model can be rigorously determined in the context of spatio-temporal pattern formation. This greatly increases the potential of reverse engineering for the study of development and other, similarly complex, biological processes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila Proteins / chemistry
  • Drosophila Proteins / genetics*
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / genetics*
  • Drosophila melanogaster / metabolism
  • Gene Expression Regulation, Developmental / genetics
  • Genetic Engineering / methods*
  • Models, Genetic
  • Protein Stability
  • RNA, Messenger / chemistry
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Repressor Proteins / chemistry
  • Repressor Proteins / genetics*
  • Repressor Proteins / metabolism
  • Systems Biology / methods*

Substances

  • Drosophila Proteins
  • RNA, Messenger
  • Repressor Proteins

Grants and funding

This collaborative project was carried out in the context of the BioPreDyn consortium, which is co-ordinated by JJ and JRB, and funded by European Commission grant FP7-KBBE-2011-5/289434. The laboratory of JJ is funded by the MEC-EMBL agreement for the EMBL/CRG Research Unit in Systems Biology. Additional financial support was provided by SGR Grant 406 from the Catalan funding agency AGAUR, and by grants BFU2009- 10184 and 273 BFU2009-09168 from the Spanish Ministerio de Economia y Competitividad (MINECO). The group at IIM-CSIC acknowledges financial support from MINECO and the European Regional Development Fund (ERDF; project “MultiScales”, DPI2011-28112-C04-03). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.