Stopped-flow chamber and image analysis system for quantitative characterization of bacterial population migration: Motility and chemotaxis ofEscherichia coli K12 to fucose

Microb Ecol. 1991 Dec;22(1):127-38. doi: 10.1007/BF02540219.

Abstract

The directed movement of a bacterial population in response to a chemical gradient is known as bacterial chemotaxis and plays a critical role in the distribution and dynamic interaction of bacterial populations. A quantitative characterization of the chemotactic response in terms of intrinsic cell properties is necessary for making reliable predictions about the migratory behavior of bacterial populations within the environment.The design of the stopped-flow diffusion chamber (SFDC) provides a well-characterized chemical gradient and reliable method for measuring bacterial migration behavior. During flow through the chamber a step change in the chemical concentration is imposed on a uniform suspension of bacteria. Once flow is stopped a transient chemical gradient forms due to diffusion; bacteria respond by forming a band of high cell density that travels toward higher concentrations of the attractant. Sequential observations of bacterial spatial distributions over a period of about ten minutes are recorded on photomicrographs. Computer-aided image analysis of the photographic negatives converts light-scattering information to a digital representation of the bacterial density profiles. A mathematical model is used to quantitatively characterize these observations in terms of intrinsic cell parameters: a chemotactic sensitivity coefficient, χ0, from the aggregate cell density accumulated in the band and a random motility coefficient, μ0, from population dispersion in the absence of a chemical gradient.Using the SFDC assay and an individual cell-based mathematical model we successfully determined values for both of these population parameters forEscherichia coli K12 responding to fucose. The values we obtained were μ0=1.1 ± 0.4 x 10(-5) cm(2)/sec and χ0=8 ± 3 x 10(-5) cm(2)/sec. These parameters will be useful for predicting population behavior in application systems such as biofilm development, population dynamics of genetically-engineered bacteria released into the environment, and in situ bioremediation technologies.