Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds

Mycopathologia. 2014 Feb;177(1-2):1-10. doi: 10.1007/s11046-013-9716-2. Epub 2013 Nov 5.

Abstract

The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aldehydes / pharmacology
  • Animals
  • Antifungal Agents / pharmacology*
  • Ascomycota / drug effects
  • Ascomycota / growth & development*
  • Bacillus / metabolism
  • Benzaldehydes / pharmacology
  • Benzothiazoles / pharmacology
  • Chiroptera / microbiology*
  • Hexanols / pharmacology
  • Microbial Sensitivity Tests
  • Mycelium / growth & development
  • Mycoses / drug therapy
  • Mycoses / veterinary*
  • Pseudomonas / metabolism
  • Spores, Fungal / growth & development
  • Volatile Organic Compounds / pharmacology*

Substances

  • Aldehydes
  • Antifungal Agents
  • Benzaldehydes
  • Benzothiazoles
  • Hexanols
  • Volatile Organic Compounds
  • nonanal
  • decanaldehyde
  • benzothiazole
  • benzaldehyde
  • 2-ethylhexanol