Fabrication of high performance/highly functional field-effect transistor devices based on [6]phenacene thin films

Phys Chem Chem Phys. 2013 Dec 21;15(47):20611-7. doi: 10.1039/c3cp53598c. Epub 2013 Nov 4.

Abstract

Field-effect transistors (FETs) based on [6]phenacene thin films were fabricated with SiO2 and parylene gate dielectrics. These FET devices exhibit field-effect mobility in the saturation regime as high as 7.4 cm(2) V(-1) s(-1), which is one of the highest reported values for organic thin-film FETs. The two- and four-probe mobilities in the linear regime display nearly similar values, suggesting negligible contact resistance at 300 K. FET characteristics were investigated using two-probe and four-probe measurement modes at 50-300 K. The two-probe mobility of the saturation regime can be explained by the multiple shallow trap and release model, while the intrinsic mobility obtained by the four-probe measurement in the linear regime is better explained by the phenomenon of transport with charge carrier scattering at low temperatures. The FET device fabricated with a parylene gate dielectric on polyethylene terephthalate possesses both transparency and flexibility, implying feasibility of practical application of [6]phenacene FETs in flexible/transparent electronics. N-channel FET characteristics were also achieved in the [6]phenacene thin-film FETs using metals that possess a small work function for use as source/drain electrodes.