Silver sulfide nanoparticles sensitized titanium dioxide nanotube arrays synthesized by in situ sulfurization for photocatalytic hydrogen production

J Colloid Interface Sci. 2014 Jan 1:413:17-23. doi: 10.1016/j.jcis.2013.09.031. Epub 2013 Sep 21.

Abstract

Titanium dioxide (TiO2) nanotube arrays (TNAs) sensitized with silver sulfide (Ag2S) nanoparticles (NPs) were synthesized via facile in situ sulfurization. Metallic silver NPs were first loaded on TNAs through a simple electrodeposition process. The as-prepared Ag/TNAs composites were further treated with a solution of acetonitrile containing sulfur (S8) and dried in vacuum to obtain a new nanocomposite material comprising of TNAs sensitized with Ag2S NPs. In these composite nanostructures, ultrafine Ag2S NPs were well-dispersed and assembled on the exterior and interior walls of the TNAs. Owing to sensitizing with a narrow bandgap material like Ag2S and the homogeneous distribution of the Ag2S NP heterojunction structures over the surface of the TNAs, the synthesized nanocomposite samples exhibited remarkable capability to absorb visible light and showed a significant enhancement in the photocatalytic efficiency of hydrogen generation. Under visible light illumination (100mW/cm(2)), a maximum photoconversion efficiency of 1.21% and the highest hydrogen production rate of 1.13mL/cm(2)h were obtained from the TNA electrodes sensitized with Ag2S NPs.

Keywords: Hydrogen production; In situ sulfurization; Photocatalytic; TiO(2) nanotube arrays.