Identification of genomic regions affecting plant height in sorghum and maize

Theor Appl Genet. 1995 Mar;90(3-4):380-8. doi: 10.1007/BF00221980.

Abstract

The objective of this study was to use restriction fragment length polymorphisms (RFLPs) to determine the genetic location and effects of genomic regions controlling plant height in sorghum. F2 plants (152) from the cross CK60 x PI229828 were used. Genomic and cDNA clones (106) identified 111 loci distributed among ten linkage groups covering 1299 cM. Interval mapping identified four regions, each in a separate linkage group. These regions may correspond to loci (dw) previously identified by alleles with qualitative effects. Also, these regions identified in sorghum may be orthologous to those previously reported for plant height in maize. Gene effects and gene action varied among genomic regions. In each region, PI229828 alleles resulted in increased plant height. Each region accounted for 9.2-28.7% of the phenotypic variation. Positive, additive effects ranged from 15 to 32cm. Tallness was dominant or overdominant and conferred by alleles from PI229828 for three quantitative trait loci (QTL). At the fourth QTL, PI229828 contributed to increased plant height, but short stature was partially dominant. One digenic interaction was significant. The presence of a PI229828 allele at one region diminished the effects of the other region. A multiple model indicated that these four regions collectively accounted for 63.4% of the total phenotypic variation. The utility of this information for germplasm conversion through backcross breeding is discussed.