Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health

Am J Clin Nutr. 2013 Dec;98(6 Suppl):1631S-1641S. doi: 10.3945/ajcn.113.058263. Epub 2013 Oct 30.

Abstract

Epidemiologic studies have convincingly associated consumption of black tea with reduced cardiovascular risk. Research on the bioactive molecules has traditionally been focused on polyphenols, such as catechins. Black tea polyphenols (BTPs), however, mainly consist of high-molecular-weight species that predominantly persist in the colon. There, they can undergo a wide range of bioconversions by the resident colonic microbiota but can in turn also modulate gut microbial diversity. The impact of BTPs on colon microbial composition can now be assessed by microbiomics technologies. Novel metabolomics platforms coupled to de novo identification are currently available to cover the large diversity of BTP bioconversions by the gut microbiota. Nutrikinetic modeling has been proven to be critical for defining nutritional phenotypes related to gut microbial bioconversion capacity. The bioactivity of circulating metabolites has been studied only to a certain extent. Bioassays dedicated to specific aspects of gut and cardiovascular health have been used, although often at physiologically irrelevant concentrations and with limited coverage of relevant metabolite classes and their conjugated forms. Evidence for cardiovascular benefits of BTPs points toward antiinflammatory and blood pressure-lowering properties and improvement in platelet and endothelial function for specific microbial bioconversion products. Clearly, more work is needed to fill in existing knowledge gaps and to assess the in vitro and in vivo bioactivity of known and newly identified BTP metabolites. It is also of interest to assess how phenotypic variation in gut microbial BTP bioconversion capacity relates to gut and cardiovascular health predisposition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Inflammatory Agents / pharmacology
  • Anti-Inflammatory Agents / therapeutic use
  • Camellia sinensis / chemistry*
  • Cardiovascular Agents / pharmacology
  • Cardiovascular Agents / therapeutic use
  • Cardiovascular Diseases / metabolism
  • Cardiovascular Diseases / microbiology
  • Cardiovascular Diseases / prevention & control*
  • Gastrointestinal Tract / drug effects*
  • Gastrointestinal Tract / metabolism
  • Gastrointestinal Tract / microbiology
  • Humans
  • Microbiota / drug effects*
  • Phytotherapy*
  • Plant Extracts / pharmacology
  • Plant Extracts / therapeutic use
  • Polyphenols / pharmacology*
  • Tea / chemistry*

Substances

  • Anti-Inflammatory Agents
  • Cardiovascular Agents
  • Plant Extracts
  • Polyphenols
  • Tea