Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm

Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18431-5. doi: 10.1073/pnas.1316533110. Epub 2013 Oct 28.

Abstract

In conventional research, colloidal particles grafted with single-stranded DNA are allowed to self-assemble, and then the resulting crystal structures are determined. Although this Edisonian approach is useful for a posteriori understanding of the factors governing assembly, it does not allow one to a priori design ssDNA-grafted colloids that will assemble into desired structures. Here we address precisely this design issue, and present an experimentally validated evolutionary optimization methodology that is not only able to reproduce the original phase diagram detailing regions of known crystals, but is also able to elucidate several previously unobserved structures. Although experimental validation of these structures requires further work, our early success encourages us to propose that this genetic algorithm-based methodology is a promising and rational materials-design paradigm with broad potential applications.

Keywords: DNA-grafted colloids; crystal lattice predictions; evolutionary algorithm; inverse design; nanostructures.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Colloids / chemical synthesis*
  • Colloids / chemistry
  • Crystallization / methods*
  • DNA, Single-Stranded / chemistry*
  • Models, Chemical*
  • Nanostructures / chemistry*
  • Research Design

Substances

  • Colloids
  • DNA, Single-Stranded