Intergeneric transfer of a partial genome and direct production of monosomic addition plants by microprotoplast fusion

Theor Appl Genet. 1996 Mar;92(3-4):316-25. doi: 10.1007/BF00223674.

Abstract

Results are reported on the transfer of single, specific chromosomes carrying kanamycin resistance (Kan(R)) and β-glucuronidase (GUS) traits from a transformed donor line of potato (Solanum tuberosum) to a recipient line of the tomato species Lycopersicon peruvianum through microprotoplast fusion. Polyethylene glycol-induced mass fusion between donor potato microprotoplasts containing one or a few chromosomes and normal recipient diploid L. peruvianum protoplasts gave several Kan(R) calli. A high frequency of plants regenerated from Kan(R) calli expressed both Kan(R) and GUS, and contained one or two copies of npt-II and a single copy of gus. Genomic in situ hybridization showed that several microprotoplast hybrid plants had one single potato donor chromosome carrying npt-II and gus genes and the complete chromosome complement of the recipient L. peruvianum (monosomic additions). Several monosomic-addition hybrid plants could be regenerated within the short time of 3 months and they were phenotypically normal, resembling the recipient line. These results suggest that the transfer of single chromosomes is tolerated better than is the transfer of the whole donor genome. The unique advantages of microprotoplast fusion are discussed: these include the direct production of monosomic addition lines for the transfer and introgression of economically important traits in sexually-incongruent species, the construction of chromosome-specific DNA libaries, high-resolution physical mapping and the identification of alien chromosome domains related to gene expression.