Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications

ACS Appl Mater Interfaces. 2013 Nov 27;5(22):12073-82. doi: 10.1021/am403905x. Epub 2013 Nov 7.

Abstract

Reduced graphene oxide (RGO) nanosheet-supported SnS2 nanosheets are prepared by a one-step microwave-assisted technique. These SnS2 nanosheets are linked with each other and dispersed uniformly on RGO surface. The SnS2-RGO sheet-on-sheet nanostructure exhibits good electrochemical performances as an anode material for lithium ion batteries. It shows larger-than-theoretical reversible capacities at 0.1 C and excellent high-rate capability at 1 C and 5 C. The composite is also for the first time identified as an excellent visible light-driven catalyst of rhodamine B and phenol with high degradation efficiencies. The removal rates of rhodamine B and phenol are 100 and 83.2%, respectively, for the SnS2-RGO composite, whereas these values are only 64.8 and 51.5% for pristine SnS2 after the same irradiation times. The outstanding electrochemical or photocatalytic performances of the composite have been attributed to the complementary effect of RGO and SnS2 in the perfect sheet-on-sheet composition nanostructure.

Publication types

  • Research Support, Non-U.S. Gov't