Control of the charge distribution and modulation of the class II-III transition in weakly coupled Mo2-Mo2 systems

Inorg Chem. 2013 Nov 4;52(21):12624-33. doi: 10.1021/ic4017855. Epub 2013 Oct 23.

Abstract

Three novel dimolybdenum dimers [Mo2(DAniF)3]2(μ-OSCC6H4CSO), [Mo2(DAniF)3]2(μ-O2CC6H4CS2), and [Mo2(DAniF)3]2(μ-S2CC6H4CS2) (DAniF = N,N'-di(p-anisyl)formamidinate) have been synthesized and characterized by single-crystal X-ray diffractions. Together with the terephthalate analogue, the four compounds, denoted as [O2-O2], [OS-OS], [S2-S2], and [O2-S2], have similar molecular skeletons and Mo2···Mo2 separations (∼12 Å), but varying sulfur contents or symmetry. The singly oxidized complexes [O2-O2](+), [OS-OS](+), [S2-S2](+), and [O2-S2](+) display characteristic intervalence transition absorption bands in the near- and mid-IR regions, with differing band energy, intensity, and shape. Applying the geometrical length of the bridging group "-CC6H4C-" (5.8 Å) as the effective electron transfer distance, calculations from the Mulliken-Hush equation yield electronic coupling matrix elements (H(ab)) in the range 600-900 cm(-1). Significantly, this series presents a transition from electron localization to "almost-delocalization" as the carboxylate groups of the bridging ligand are successively thiolated. In terms of Robin-Day's scheme, [S2-S2](+) is best described as an intermediate between Class II and III, while [O2-O2](+) and [OS-OS](+) belong to Class II. It is unusual that the Class II-III transition occurs in such a weakly coupled system (H(ab) < 1000 cm(-1)). This is attributed to the d(δ)-p(π) conjugation between the Mo2 center and bridging ligand. By electrochemical and spectroscopic methods, the internal energy difference for [O2-S2](+) is determined to be 2250 ± 80 cm(-1), which controls the charge distribution of the cation radical. The experimental results and theoretical analyses illustrate that the unsymmetrical geometry leads to unbalanced electronic configurations and asymmetrical redox and optical behaviors.