Photonic-crystal structures with polarized-wave-guiding property and their applications in the mid and far infrared wave bands

Opt Express. 2013 Oct 21;21(21):25592-606. doi: 10.1364/OE.21.025592.

Abstract

Photonic crystal (PhC) structures with polarized-wave-guiding property (PhC polarization waveguides) are proposed, demonstrated and applied to construct several new kinds of compact and efficient micro polarization devices in the mid and far infrared wave bands, including TE polarizers, TM polarizers, TE-downward T-shaped polarization-beam splitters (PBSs), TM-downward T-shaped PBSs and lying-T-shaped PBSs. Theoretical models for the operating mechanism of the structures are presented. The polarization devices built as applications of the PhC polarization waveguides are demonstrated by the finite-element method with the dispersion of materials being considered. Furthermore, optimized parameters are obtained by investigating the extinction ratio (EXR), the degree of polarization (DOP) and insertion loss. Moreover, structures based on PhC slabs derived from the 2D ones, together with woodpile PhC covers and substrates are suggested for the 3D version of the proposed devices for implementation. An example of the 3D-version structures shows a performance as good as that of the 2D structure. The devices proposed have relatively wide ranges of operating wavelength. Meanwhile, they are very compact in their structures and convenient for connection or coupling of signals among different optical elements, so they have the potential for wide applications in mid-and-far infrared optical devices or circuits, which are useful in remote sensing, image and vision, positioning and communications with infrared waves. Furthermore, the principle can be applied to build polarizers and PBSs in other wave bands.

Publication types

  • Research Support, Non-U.S. Gov't