Ventilation Behavior in Trained and Untrained Men During Incremental Test: Evidence of one Metabolic Transition Point

J Sports Sci Med. 2008 Sep 1;7(3):335-43. eCollection 2008.

Abstract

This study aimed to describe and compare the ventilation behavior during an incremental test utilizing three mathematical models and to compare the feature of ventilation curve fitted by the best mathematical model between aerobically trained (TR) and untrained (UT) men. Thirty five subjects underwent a treadmill test with 1 km·h(-1) increases every minute until exhaustion. Ventilation averages of 20 seconds were plotted against time and fitted by: bi-segmental regression model (2SRM); three-segmental regression model (3SRM); and growth exponential model (GEM). Residual sum of squares (RSS) and mean square error (MSE) were calculated for each model. The correlations between peak VO2 (VO2PEAK), peak speed (SpeedPEAK), ventilatory threshold identified by the best model (VT2SRM) and the first derivative calculated for workloads below (moderate intensity) and above (heavy intensity) VT2SRM were calculated. The RSS and MSE for GEM were significantly higher (p < 0.01) than for 2SRM and 3SRM in pooled data and in UT, but no significant difference was observed among the mathematical models in TR. In the pooled data, the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.58; p < 0.01) and SpeedPEAK (r = -0.46; p < 0.05) while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r = -0. 43; p < 0.05). In UT group the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.65; p < 0.05) and SpeedPEAK (r = -0.61; p < 0.05), while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r= -0.73; p< 0.01), SpeedPEAK (r = -0.73; p < 0.01) and VO2PEAK (r = -0.61; p < 0.05) in TR group. The ventilation behavior during incremental treadmill test tends to show only one threshold. UT subjects showed a slower ventilation increase during moderate intensities while TR subjects showed a slower ventilation increase during heavy intensities. Key pointsThe increase of ventilation during incremental exercise tends to show only one metabolic transition point.The presence of a threshold process or a continuous process in ventilation during incremental exercise seems to be only a methodological matter.The ventilatory efficiency can be employed to distinguish trained than untrained subjects once this index is associated with aerobic parameters. When analyzed the whole curve, trained subjects show a better ventilatory efficiency at heavy intensities and untrained subjects show a better ventilatory efficiency at moderate intensities.

Keywords: Ventilatory threshold; aerobic training status; mathematical modeling; ventilatory responses.