Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels

Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18309-14. doi: 10.1073/pnas.1311406110. Epub 2013 Oct 21.

Abstract

Alcohol (ethanol) produces a wide range of pharmacological effects on the nervous system through its actions on ion channels. The molecular mechanism underlying ethanol modulation of ion channels is poorly understood. Here we used a unique method of alcohol-tagging to demonstrate that alcohol activation of a G-protein-gated inwardly rectifying potassium (GIRK or Kir3) channel is mediated by a defined alcohol pocket through changes in affinity for the membrane phospholipid signaling molecule phosphatidylinositol 4,5-bisphosphate. Surprisingly, hydrophobicity and size, but not the canonical hydroxyl, were important determinants of alcohol-dependent activation. Altering levels of G protein Gβγ subunits, conversely, did not affect alcohol-dependent activation, suggesting a fundamental distinction between receptor and alcohol gating of GIRK channels. The chemical properties of the alcohol pocket revealed here might extend to other alcohol-sensitive proteins, revealing a unique protein microdomain for targeting alcohol-selective therapeutics in the treatment of alcoholism and addiction.

Keywords: Dr-VSP; Kcnj6; Kir3.2; chemical modification; mPhosducin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Crystallization
  • Ethanol / pharmacology*
  • G Protein-Coupled Inwardly-Rectifying Potassium Channels / chemistry*
  • G Protein-Coupled Inwardly-Rectifying Potassium Channels / metabolism*
  • HEK293 Cells
  • Humans
  • Models, Molecular*
  • Mutagenesis
  • Patch-Clamp Techniques
  • Phosphatidylinositol 4,5-Diphosphate / metabolism
  • Protein Conformation*

Substances

  • G Protein-Coupled Inwardly-Rectifying Potassium Channels
  • Phosphatidylinositol 4,5-Diphosphate
  • Ethanol