Characterization of spermatogonial markers in the mature testis of the dogfish (Scyliorhinus canicula L.)

Reproduction. 2013 Nov 21;147(1):125-39. doi: 10.1530/REP-13-0316. Print 2014 Jan.

Abstract

In dogfish, spermatogenesis progresses from a restricted germinative zone, which lines the dorsal testicular vessel. Single spermatogonia (A(s)), including the spermatogonial stem cells (SSCs), produce successively paired (A(p)), undifferentiated (A(u4) to A(u512)), and differentiated (A(d1) to A(d8)) spermatogonia and preleptotene (PL) spermatocytes through 13 mitoses. Dogfish spermatogonial subpopulations present classical morphological characteristics but cannot be distinguished on the basis of molecular markers. This characterization has been initiated in mammals despite the difficulty to separate each spermatogonial subpopulation. For instance, both glial cell-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger protein (PLZF) are markers of undifferentiated spermatogonia, whereas receptor tyrosine kinase C-kit is a marker of differentiated spermatogonia. The aim of this study is to characterize spermatogonial markers and to differentiate several spermatogonial subpopulations. Dogfish cDNA sequences have been identified and validated by phylogenetic analyses for gfrα1, plzf, pou2, as well as for high-mobility group box proteins 2 and 3 (hmgb2 and 3) and for mini-chromosome maintenance protein 6 (mcm6). We have used the anatomical advantage of the polarized dogfish testis to analyze the expression of those markers by RT-PCR and in situ hybridization. gfrα1, pou2, and plzf have been detected in the testicular germinative zone, suggesting that spermatogonial markers are relatively well conserved among vertebrates but with a less restricted expression for plzf. Moreover, hmgb3 and mcm6 have been identified as new markers of differentiated spermatogonia. Finally, this first molecular characterization of spermatogonial subpopulations in a chondrichthyan model will be useful for further studies on the SSC niche evolution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Dogfish / metabolism*
  • Male
  • Spermatocytes / metabolism
  • Spermatogenesis / physiology*
  • Spermatogonia / metabolism*
  • Testis / metabolism*

Substances

  • Biomarkers