Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose

Appl Microbiol Biotechnol. 2014 Jan;98(1):95-104. doi: 10.1007/s00253-013-5285-z. Epub 2013 Oct 11.

Abstract

The Escherichia coli XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the Dickeya dadantii 3937 2-ketobutyrate oxidase or the E. coli pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the Ralstonia eutropha propionyl-CoA synthetase (PrpE) or the E. coli acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the E. coli tdcE gene or the Clostridium difficile pflB gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-co-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant E. coli XL1-blue strain equipped with citramalate pathway expressing the E. coli poxB L253F V380A gene and R. eutropha prpE gene together with the R. eutropha PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-co-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-co-3HV) could be increased up to 5.5 mol% by additional deletion of the prpC and scpC genes, which are responsible for the metabolism of propionyl-CoA in host strains.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Clostridioides difficile / enzymology
  • Clostridioides difficile / genetics
  • Cupriavidus necator / enzymology
  • Cupriavidus necator / genetics
  • Escherichia coli / enzymology*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Glucose / metabolism*
  • Metabolic Engineering*
  • Metabolic Networks and Pathways / genetics*
  • Polyesters / metabolism*

Substances

  • Polyesters
  • poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate)
  • Glucose