Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro

J Orthop Res. 2014 Jan;32(1):175-7. doi: 10.1002/jor.22463. Epub 2013 Sep 25.

Abstract

We evaluated the effectiveness of different sizes of bioactive glass S53P4 against Staphylococcus aureus biofilms grown on metal discs in vitro. S. aureus biofilms were cultivated on titanium discs. BAG-S53P4 (0.5-0.8 mm and <45 µm) were placed in contact with the discs containing biofilms. Glass beads (0.5 mm) were used as a control. After each interval, the pH from each sample was measured. Colony forming units were counted for the biofilm recovery verification. In parallel, we tested the activity of bioactive glass against S. aureus planktonic cells. We found that BAG-S53P4 can suppress S. aureus biofilm formation on titanium discs in vitro. The suppression rate of biofilm cells by BAG-S53P4 <45 µm was significantly higher than by BAG-S53P4 0.5-0.8 mm. BAG-S53P4 has a clear growth-inhibitory effect on S. aureus biofilms. BAG-S53P4 <45 µm is more efficient against biofilm growth in vitro comparing with BAG-S53P4 0.5-0.8 mm. Bioactive glass S53P4 has potential to be used as bone substitute for the resolution of infection complications in joint replacement surgeries and treatment of chronic osteomyelitis.

Keywords: Staphylococcus aureus; bioactive glass; biofilm; bone substitute; osteomielytis; periprosthetic joint infections.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Biofilms / drug effects
  • Bone Substitutes / pharmacology*
  • Glass*
  • Humans
  • In Vitro Techniques
  • Osteomyelitis / drug therapy
  • Osteomyelitis / microbiology
  • Prosthesis-Related Infections / drug therapy*
  • Prosthesis-Related Infections / microbiology
  • Staphylococcal Infections / drug therapy*
  • Staphylococcal Infections / microbiology
  • Staphylococcus aureus / drug effects*
  • Staphylococcus aureus / growth & development
  • Titanium / pharmacology

Substances

  • Anti-Bacterial Agents
  • Bone Substitutes
  • bioactive glass S53P4
  • Titanium