Multivariable Static Ankle Mechanical Impedance With Active Muscles

IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):44-52. doi: 10.1109/TNSRE.2013.2262689. Epub 2013 Sep 20.

Abstract

This paper reports quantification of multivariable static ankle mechanical impedance when muscles were active. Repetitive measurements using a highly backdrivable therapeutic robot combined with robust function approximation methods enabled reliable characterization of the nonlinear torque-angle relation at the ankle in two coupled degrees of freedom simultaneously, a combination of dorsiflexion-plantarflexion and inversion-eversion, and how it varied with muscle activation. Measurements on 10 young healthy seated subjects quantified the behavior of the human ankle when muscles were active at 10% of maximum voluntary contraction. Stiffness, a linear approximation to static ankle mechanical impedance, was estimated from the continuous vector field. As with previous measurements when muscles were maximally relaxed, we found that ankle stiffness was highly direction-dependent, being weakest in inversion/eversion. Predominantly activating a single muscle or co-contracting antagonistic muscles significantly increased ankle stiffness in all directions but it increased more in the sagittal plane than in the frontal plane, accentuating the relative weakness of the ankle in the inversion-eversion direction. Remarkably, the observed increase was not consistent with simple superposition of muscle-generated stiffness, which may be due to the contribution of unmonitored deep ankle muscles. Implications for the assessment of neuro-mechanical disorders are discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Ankle Joint / physiology*
  • Computer Simulation
  • Elastic Modulus / physiology
  • Female
  • Humans
  • Isometric Contraction / physiology*
  • Male
  • Models, Biological*
  • Multivariate Analysis
  • Muscle, Skeletal / physiology*
  • Nonlinear Dynamics
  • Physical Endurance / physiology*
  • Physical Exertion / physiology
  • Range of Motion, Articular / physiology
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Stress, Mechanical
  • Viscosity
  • Young Adult