A flatbed scanner for large-area thickness determination of ultra-thin layers in printed electronics

Opt Express. 2013 Sep 23;21(19):21897-911. doi: 10.1364/OE.21.021897.

Abstract

Enabling solution-based printing techniques for sub-100 nm thin semiconductors for the application in large-area organic electronics is a challenging task. In order to optimize the process parameters, the layers have to be characterized on a large lateral scale while determining the nanometer thickness at the same time. We present a lateral and vertical resolving measurement method for large-area, semi-transparent thin films based on optical interference effects. We analyzed the RGB color images of up to 150 mm square-sized thin film samples obtained by a modified commercial flatbed scanner. Utilizing and comparing theoretical and measured color contrast values, we determined most probable thickness values of the imaged sample area pixel by pixel. Within specific boundary conditions, we found very good agreement between the presented imaging color reflectometry and reference methods. Due to its simple setup, our method is suitable to be implemented as part of a color vision inspection system in in-line printing and coating processes.

Publication types

  • Research Support, Non-U.S. Gov't