Resistance exercise induces region-specific adaptations in anterior pituitary gland structure and function in rats

J Appl Physiol (1985). 2013 Dec;115(11):1641-7. doi: 10.1152/japplphysiol.00687.2013. Epub 2013 Oct 3.

Abstract

The anterior pituitary gland (AP) increases growth hormone (GH) secretion in response to resistance exercise (RE), but the nature of AP adaptations to RE is unknown. To that end, we examined the effects of RE on regional AP somatotroph GH release, structure, and relative quantity. Thirty-six Sprague-Dawley rats were assigned to one of four groups: 1) no training or acute exercise (NT-NEX); 2) no training with acute exercise (NT-EX); 3) resistance training without acute exercise (RT-NEX); 4) resistance training with acute exercise (RT-EX). RE incorporated 10, 1 m-weighted ladder climbs at an 85° angle. RT groups trained 3 days/wk for 7 wk, progressively. After death, trunk blood was collected, and each AP was divided into quadrants (ventral-dorsal and left-right). We measured: 1) trunk plasma GH; 2) somatotroph GH release; 3) somatotroph size; 4) somatotroph secretory content; and 5) percent of AP cells identified as somatotrophs. Trunk GH differed by group (NT-NEX, 8.9 ± 2.4 μg/l; RT-NEX, 9.2 ± 3.5 μg/l; NT-EX, 15.6 ± 3.4 μg/l; RT-EX, 23.4 ± 4.6 μg/l). RT-EX demonstrated greater somatotroph GH release than all other groups, predominantly in ventral regions (P < 0.05-0.10). Ventral somatotrophs were larger in NT-EX and RT-NEX compared with RT-EX (P < 0.05-0.10). RT-NEX exhibited significantly greater secretory granule content than all other groups but in the ventral-right region only (P < 0.05-0.10). Our findings indicate reproducible patterns of spatially distinct, functionally different somatotroph subpopulations in the rat pituitary gland. RE training appears to induce dynamic adaptations in somatotroph structure and function.

Keywords: 22-kD growth hormone; adaptation; resistance training; somatotrophs.

MeSH terms

  • Adaptation, Physiological / physiology*
  • Animals
  • Growth Hormone / metabolism
  • Male
  • Physical Conditioning, Animal / physiology*
  • Pituitary Gland, Anterior / metabolism
  • Pituitary Gland, Anterior / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Resistance Training

Substances

  • Growth Hormone