Synthesis and characterization of MnCrO4, a new mixed-valence antiferromagnet

Inorg Chem. 2013 Oct 21;52(20):11850-8. doi: 10.1021/ic401391b. Epub 2013 Oct 3.

Abstract

A new orthorhombic phase, MnCrO4, isostructural with MCrO4 (M = Mg, Co, Ni, Cu, Cd) was prepared by evaporation of an aqueous solution, (NH4)2Cr2O7 + 2 Mn(NO3)2, followed by calcination at 400 °C. It is characterized by redox titration, Rietveld analysis of the X-ray diffraction pattern, Cr K edge and Mn K edge XANES, ESR, magnetic susceptibility, specific heat and resistivity measurements. In contrast to the high-pressure MnCrO4 phase where both cations are octahedral, the new phase contains Cr in a tetrahedral environment suggesting the charge balance Mn(2+)Cr(6+)O4. However, the positions of both X-ray absorption K edges, the bond lengths and the ESR data suggest the occurrence of some mixed-valence character in which the mean oxidation state of Mn is higher than 2 and that of Cr is lower than 6. Both the magnetic susceptibility and the specific heat data indicate an onset of a three-dimensional antiferromagnetic order at TN ≈ 42 K, which was confirmed also by calculating the spin exchange interactions on the basis of first principles density functional calculations. Dynamic magnetic studies (ESR) corroborate this scenario and indicate appreciable short-range correlations at temperatures far above TN. MnCrO4 is a semiconductor with activation energy of 0.27 eV; it loses oxygen on heating above 400 °C to form first Cr2O3 plus Mn3O4 and then Mn1.5Cr1.5O4 spinel.