Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm

Birth Defects Res C Embryo Today. 2013 Sep;99(3):203-222. doi: 10.1002/bdrc.21041.

Abstract

As dense connective tissues connecting bone to muscle and bone to bone, respectively, tendon and ligament (T/L) arise from the somitic mesoderm, originating in a recently discovered somitic compartment, the syndetome. Inductive signals from the adjacent sclerotome and myotome upregulate expression of Scleraxis, a key transcription factor for tenogenic and ligamentogenic differentiation. Understanding T/L development is critical to establishing a knowledge base for improving the healing and repair of T/L injuries, a high-burden disease due to the intrinsically poor natural healing response. Current treatment of the three most common tendon injuries-tearing of the rotator cuff of the shoulder, flexor tendon of the hand, and Achilles tendon-include mostly surgical repair and/or conservative approaches, including biophysical modalities such as rehabilitation and cryotherapy. Unfortunately, the fibrovascular scar formed during healing possesses inferior mechanical and biochemical properties, resulting in compromised tissue functionality. Regenerative approaches have sought to augment the injured tissue with cells, scaffolds, bioactive agents, and mechanical stimulation to improve the natural healing response. The key challenges in restoring full T/L function following injury include optimal combination of these biological agents as well as their delivery to the injury site. A greater understanding of the molecular mechanisms involved in T/L development and natural healing, coupled with the capability of producing complex biomaterials to deliver multiple biofactors with high spatiotemporal resolution and specificity, should lead to regenerative procedures that more closely recapitulate T/L morphogenesis, thereby offering future patients the prospect of T/L regeneration, as opposed to simple tissue repair.

Keywords: clinical treatment; tendon development; tendon regeneration; tendon tissue engineering.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Achilles Tendon / injuries
  • Achilles Tendon / pathology*
  • Achilles Tendon / transplantation
  • Animals
  • Cicatrix / physiopathology
  • Humans
  • Models, Animal
  • Patellar Ligament / injuries
  • Patellar Ligament / pathology*
  • Patellar Ligament / transplantation
  • Randomized Controlled Trials as Topic
  • Regeneration*
  • Rotator Cuff / pathology*
  • Rotator Cuff / transplantation
  • Rotator Cuff Injuries
  • Stem Cell Transplantation / methods
  • Stem Cells
  • Tendon Injuries / therapy
  • Tissue Engineering
  • Tissue Scaffolds
  • Wound Healing / physiology