Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9382-5. doi: 10.1021/am402923t. Epub 2013 Sep 26.

Abstract

A fast and single-step process is developed for the fabrication of low-cost, high-quality, and large-area concave microlens arrays (MLAs) by the high-speed line-scanning of femtosecond laser pulses. Each concave microlens can be generated by a single laser pulse, and over 2.78 million microlenses were fabricated on a 2 × 2 cm(2) polydimethylsiloxane (PDMS) sheet within 50 min, which greatly enhances the processing efficiency compared to the classical laser direct writing method. The mechanical pressure induced by the expansion of the laser-induced plasmas as well as a long resolidifing time is the reason for the formation of smooth concave spherical microstructures. We show that uniform microlenses with different diameters and depths can be controlled by adjusting the power of laser pulses. Their high-quality optical performance is also demonstrated in this work.

Publication types

  • Research Support, Non-U.S. Gov't