Cell surface F1/FO ATP synthase contributes to interstitial flow-mediated development of the acidic microenvironment in tumor tissues

Am J Physiol Cell Physiol. 2013 Dec 1;305(11):C1139-50. doi: 10.1152/ajpcell.00199.2013. Epub 2013 Sep 25.

Abstract

To address pivotal roles of cell surface F1/FO ATP synthase in the development of acidic microenvironment in tumor tissues, we investigated effects of shear stress stimulation on the cultured human breast cancer cells, MDA-MB-231 and MDA-MB-157, or human melanoma cells, SK-Mel-1. Shear stress stimulation (0.5-5.0 dyn/cm(2)), the levels of which are similar to those produced by the interstitial flow, induced strength-dependent corelease of ATP and H(+) from the cells, which triggered CO2 gas excretion. In contrast, the same level of shear stress stimulation did not induce significant ATP release and CO2 gas excretion from the control human mammary epithelial cells (HMEC). Marked immunocytochemical and mRNA expression of cell surface F1/FO ATP synthase, vacuolar-ATPase (V-ATPase), carbonic anhydrase type IX, and ectonucleoside triphosphate diphosphohydrolase (ENTPDase) 3 were detected in MDA-MB-231 cells, but little or no expression on the HMEC. Pretreatment with cell surface F1/FO ATP synthase inhibitors, but not cell surface V-ATPase inhibitors, caused a significant reduction of the shear stress stimulation-mediated ATP release and CO2 gas excretion from MDA-MB-231 cells. The ENTPDase activity in the shear stress-loaded MDA-MB-231 cell culture medium supernatant increased significantly in a time-dependent manner. In addition, MDA-MB-231 cells displayed strong staining for purinergic 2Y1 (P2Y1) receptors on their surfaces, and the receptors partially colocalized with ENTPDase 3. These findings suggest that cell surface F1/FO ATP synthase, but not V-ATPase, may play key roles in the development of interstitial flow-mediated acidic microenvironment in tumor tissues through the shear stress stimulation-induced ATP and H(+) corelease and CO2 gas production.

Keywords: CO2 gas excretion; MDA-MB-231; bafilomycin A; carbonic anhydrase IX, ATPase; corelease of ATP and H+; piceatannol.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Culture Techniques / methods
  • Cell Line, Tumor
  • Cell Membrane / drug effects
  • Cell Membrane / enzymology*
  • Enzyme Inhibitors / pharmacology
  • Extracellular Fluid / drug effects
  • Extracellular Fluid / enzymology*
  • Humans
  • Hydrogen-Ion Concentration
  • Proton-Translocating ATPases / antagonists & inhibitors
  • Proton-Translocating ATPases / biosynthesis*
  • Shear Strength / drug effects
  • Shear Strength / physiology*
  • Tumor Microenvironment / physiology*

Substances

  • Enzyme Inhibitors
  • Proton-Translocating ATPases