Characterization of the molecular mechanism of the bone-anabolic activity of carfilzomib in multiple myeloma

PLoS One. 2013 Sep 16;8(9):e74191. doi: 10.1371/journal.pone.0074191. eCollection 2013.

Abstract

Carfilzomib, the next generation of proteasome inhibitor, may increase osteoblast-related markers in patients with multiple myeloma, but the molecular mechanism of its effect on mesenchymal stem cell differentiation to osteoblasts remains unknown. Herein, we demonstrated that carfilzomib significantly promoted mesenchymal stem cell differentiation into osteoblasts. In osteoprogenitor cells and primary mesenchymal stem cells from patients with myeloma, carfilzomib induced increases in alkaline phosphatase activity, matrix mineralization, and calcium deposition via Wnt-independent activation of β-catenin/TCF signaling. Using affinity pull-down assays with immunoblotting analysis and immunofluorescence, we found that carfilzomib induced stabilization of both free and active forms of β-catenin in a time- and dose-dependent manner that was not associated with β-catenin transcriptional regulation. Nuclear translocation of β-catenin protein was associated with TCF transcriptional activity that was independent of the effects of GSK3β-activation and of signaling induced by 19 Wnt ligands, 10 Frizzled receptors, and LRP5/6 co-receptors. Blocking activation of β-catenin/TCF signaling by dominant negative TCF1 or TCF4 attenuated carfilzomib-induced matrix mineralization. Thus, carfilzomib induced osteoblast differentiation via Wnt-independent activation of the β-catenin/TCF pathway. These results provide a novel molecular mechanism critical to understanding the anabolic role of carfilzomib on myeloma-induced bone disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation / drug effects
  • Cells, Cultured
  • Humans
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / metabolism
  • Multiple Myeloma / drug therapy*
  • Multiple Myeloma / metabolism
  • Oligopeptides / therapeutic use*
  • Signal Transduction / drug effects
  • Signal Transduction / genetics
  • beta Catenin / genetics
  • beta Catenin / metabolism*

Substances

  • Oligopeptides
  • beta Catenin
  • carfilzomib