The pharynx of the nematode C. elegans: A model system for the study of motor control

Worm. 2013 Jan 1;2(1):e21833. doi: 10.4161/worm.21833.

Abstract

Motor control is a complex process that requires interplay among the nervous system, muscles and environment. The simple anatomy, well-characterized muscle movements and ample resources for molecular and cellular dissection make the pharynx of the nematode C. elegans an attractive model system for the study of motor control. The C. elegans pharynx shows two clear muscle movements that are essential for food intake, pharyngeal pumping and isthmus peristalsis. Here, we review our recent findings on the mechanism by which food activates the feeding motions. To understand this process, we characterized the behavior of the feeding motions in response to serotonin, an endogenous pharyngeal pumping activator whose action is triggered by food. We found that: (1) the timing of onset and frequencies of the two feeding motions are distinct; (2) isthmus peristalsis is selectively coupled to the preceding pump; (3) like food, serotonin activates isthmus peristalsis as well as pharyngeal pumping. By genetic analysis, we showed that two separate neural pathways activate the two feeding motions explaining the differences between the two feeding motions. We also proposed a model that explains how the two feeding motions are separately controlled, yet coupled by the interaction between the nervous system and the muscles in the pharynx. Finally, we briefly discuss future approaches to further understand the mechanism that couples the two feeding motions in C. elegans and to possibly understand evolution of motor control in the pharynx by expanding findings in C. elegans to other nematode species.

Keywords: feeding activation; motor control; muscle; neural circuit; pharynx; serotonin.