Caffeine alters anaerobic distribution and pacing during a 4000-m cycling time trial

PLoS One. 2013 Sep 18;8(9):e75399. doi: 10.1371/journal.pone.0075399. eCollection 2013.

Abstract

The purpose of the present study was to investigate the effects of caffeine ingestion on pacing strategy and energy expenditure during a 4000-m cycling time-trial (TT). Eight recreationally-trained male cyclists volunteered and performed a maximal incremental test and a familiarization test on their first and second visits, respectively. On the third and fourth visits, the participants performed a 4000-m cycling TT after ingesting capsules containing either caffeine (5 mg.kg(-1) of body weight, CAF) or cellulose (PLA). The tests were applied in a double-blind, randomized, repeated-measures, cross-over design. When compared to PLA, CAF ingestion increased mean power output [219.1±18.6 vs. 232.8±21.4 W; effect size (ES) = 0.60 (95% CI = 0.05 to 1.16), p = 0.034] and reduced the total time [419±13 vs. 409±12 s; ES = -0.71 (95% CI = -0.09 to -1.13), p = 0.026]. Furthermore, anaerobic contribution during the 2200-, 2400-, and 2600-m intervals was significantly greater in CAF than in PLA (p<0.05). However, the mean anaerobic [64.9±20.1 vs. 57.3±17.5 W] and aerobic [167.9±4.3 vs. 161.8±11.2 W] contributions were similar between conditions (p>0.05). Similarly, there were no significant differences between CAF and PLA for anaerobic work (26363±7361 vs. 23888±6795 J), aerobic work (68709±2118 vs. 67739±3912 J), or total work (95245±8593 vs. 91789±7709 J), respectively. There was no difference for integrated electromyography, blood lactate concentration, heart rate, and ratings of perceived exertion between the conditions. These results suggest that caffeine increases the anaerobic contribution in the middle of the time trial, resulting in enhanced overall performance.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Anaerobic Threshold / drug effects*
  • Caffeine / pharmacology*
  • Central Nervous System Stimulants / pharmacology*
  • Cross-Over Studies
  • Electromyography
  • Exercise / physiology*
  • Heart Rate / drug effects
  • Humans
  • Male
  • Time Factors

Substances

  • Central Nervous System Stimulants
  • Caffeine

Grants and funding

This study was supported by a grant from the Coordination of Improvement of Personnel of Superior Level (CAPES-PRODOC, call MEC/CAPES 029/2010; grant number 58). Website: www.capes.gov.br. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.