Kinetics study of the reaction of OH radicals with C5-C8 cycloalkanes at 240-340 K using the relative rate/discharge flow/mass spectrometry technique

J Phys Chem A. 2013 Oct 24;117(42):10863-72. doi: 10.1021/jp406923d. Epub 2013 Oct 11.

Abstract

Rate constants of reactions of hydroxyl radical with cyclopentane (k1), cyclohexane (k2), cycloheptane (k3), and cyclooctane (k4) have been acquired at 240-340 K and a total pressure of about 1 Torr using the technique of relative rate combined with discharge flow and mass spectrometry (RR/DF/MS). At 298 K, the rate constants are determined using two reference compounds, which are averaged to be k1 = (4.81 ± 0.88) × 10(-12), k2 = (6.41 ± 0.85) × 10(-12), k3 = (10.30 ± 1.44) × 10(-12), and k4 = (1.42 ± 0.27) × 10(-11) cm(3) molecule(-1) s(-1). The Arrhenius expressions at 240-340 K for these reactions are determined to be k1(T) = (2.43 ± 0.50) × 10(-11)exp[-(481 ± 58)/T], k2(T) = (3.96 ± 0.60) × 10(-11)exp[-554 ± 42)/T], k3(T) = (5.74 ± 0.66) × 10(-11)exp[-527 ± 33)/T], and k4(T) = (1.12 ± 0.21) × 10(-10)exp[-626 ± 53)/T]. Using the kcycloalkane+OH(277 K) values measured in the present work, the atmospheric lifetime for cyclopentane, cyclohexane, cycloheptane, and cyclooctane is estimated to be about 78, 64, 38, and 29 h, respectively.