Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents

Molecules. 2013 Sep 17;18(9):11496-511. doi: 10.3390/molecules180911496.

Abstract

Two series of apigenin [5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one] derivatives, 3a-3j and 4a-4j, were synthesized. The apigenin and alkyl amines moieties of these compounds were separated by C₂ or C₃ spacers, respectively. The chemical structures of the apigenin derivatives were confirmed using ¹H-NMR, ¹³C-NMR, and electrospray ionization mass spectroscopy. The in vitro antibacterial and antiproliferative activities of all synthesized compounds were determined. Among the tested compounds, 4a-4j displayed significant antibacterial activity against the tested strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa). Additionally, 4i showed the best inhibitory activity with minimum inhibitory concentrations of 1.95, 3.91, 3.91, and 3.91 μg/mL against S. aureus, B. subtilis, E. coli, and P. aeruginosa, respectively. The antiproliferative activity of the apigenin derivatives was evaluated by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. We determined that 4a-4j displayed better growth inhibition activity against four human cancer cell lines, namely, human lung (A549), human cervical (HeLa), human hepatocellular liver (HepG2), and human breast (MCF-7) cancer cells, than the parent apigenin. Compound 4j was found to be the most active antiproliferative compound against the selected cancer cells. Structure-activity relationships were also discussed based on the obtained experimental data.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis*
  • Anti-Bacterial Agents / pharmacology
  • Antineoplastic Agents / chemical synthesis*
  • Antineoplastic Agents / pharmacology
  • Bacillus subtilis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Disk Diffusion Antimicrobial Tests
  • Drug Screening Assays, Antitumor
  • Escherichia coli / drug effects
  • Flavones / chemical synthesis*
  • Flavones / pharmacology
  • Humans
  • Pseudomonas aeruginosa / drug effects
  • Staphylococcus aureus / drug effects

Substances

  • Anti-Bacterial Agents
  • Antineoplastic Agents
  • Flavones