Absence of ancient DNA in sub-fossil insect inclusions preserved in 'Anthropocene' Colombian copal

PLoS One. 2013 Sep 11;8(9):e73150. doi: 10.1371/journal.pone.0073150. eCollection 2013.

Abstract

Insects preserved in copal, the sub-fossilized resin precursor of amber, have potential value in molecular ecological studies of recently-extinct species and of extant species that have never been collected as living specimens. The objective of the work reported in this paper was therefore to determine if ancient DNA is present in insects preserved in copal. We prepared DNA libraries from two stingless bees (Apidae: Meliponini: Trigonisca ameliae) preserved in 'Anthropocene' Colombian copal, dated to 'post-Bomb' and 10,612±62 cal yr BP, respectively, and obtained sequence reads using the GS Junior 454 System. Read numbers were low, but were significantly higher for DNA extracts prepared from crushed insects compared with extracts obtained by a non-destructive method. The younger specimen yielded sequence reads up to 535 nucleotides in length, but searches of these sequences against the nucleotide database revealed very few significant matches. None of these hits was to stingless bees though one read of 97 nucleotides aligned with two non-contiguous segments of the mitochondrial cytochrome oxidase subunit I gene of the East Asia bumblebee Bombus hypocrita. The most significant hit was for 452 nucleotides of a 470-nucleotide read that aligned with part of the genome of the root-nodulating bacterium Bradyrhizobium japonicum. The other significant hits were to proteobacteria and an actinomycete. Searches directed specifically at Apidae nucleotide sequences only gave short and insignificant alignments. All of the reads from the older specimen appeared to be artefacts. We were therefore unable to obtain any convincing evidence for the preservation of ancient DNA in either of the two copal inclusions that we studied, and conclude that DNA is not preserved in this type of material. Our results raise further doubts about claims of DNA extraction from fossil insects in amber, many millions of years older than copal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amber / chemistry
  • Animals
  • Bees / genetics
  • Biological Evolution
  • DNA*
  • Extinction, Biological
  • Fossils*
  • Insecta / genetics*
  • Sequence Analysis, DNA

Substances

  • Amber
  • DNA

Grants and funding

DP was supported by a 2-month University of Manchester research grant awarded to TAB and RFP, CW acknowledges a Natural Environment Research Council PhD studentship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.