AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum

PLoS One. 2013 Sep 10;8(9):e72915. doi: 10.1371/journal.pone.0072915. eCollection 2013.

Abstract

Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fungal Proteins / genetics*
  • Fungal Proteins / metabolism
  • Fusarium / genetics*
  • Fusarium / metabolism
  • Gene Deletion
  • Gene Expression
  • Gene Expression Profiling
  • Gene Expression Regulation, Fungal
  • Gene Order
  • Gene Targeting
  • Genes, Reporter
  • Genetic Complementation Test
  • Open Reading Frames
  • Phenotype
  • Protein Binding
  • Protein Transport
  • Recombinant Fusion Proteins
  • Signal Transduction
  • Spores, Fungal / genetics*
  • Spores, Fungal / metabolism

Substances

  • Fungal Proteins
  • Recombinant Fusion Proteins

Grants and funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No.2008-0061897). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.