Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches

Biotechnol Adv. 2013 Nov 15;31(7):1047-62. doi: 10.1016/j.biotechadv.2013.09.001. Epub 2013 Sep 11.

Abstract

Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives.

Keywords: Flow cytometry; Gene expression noise; Heterogeneity; Human embryonic stem cells; Induced pluripotent stem cells; Mass cytometry; Multiple displacement amplification; Single-cell analysis; Stochastic multiscale model; Time-lapse microscopy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biotechnology
  • Flow Cytometry
  • Humans
  • Mice
  • Microfluidic Analytical Techniques
  • Models, Biological*
  • Single-Cell Analysis*
  • Stem Cells*
  • Time-Lapse Imaging