Effects of high-fat and high-carbohydrate diets on fat and carbohydrate oxidation and plasma metabolites in healthy cats

J Anim Physiol Anim Nutr (Berl). 2014 Jun;98(3):596-607. doi: 10.1111/jpn.12126. Epub 2013 Sep 13.

Abstract

High-fat (HF) or high-carbohydrate (HC) diets (30% fat, 18.9% carbohydrate; HF and 10% fat, 46.3% carbohydrate; HC) and lengths of adaptation were investigated in cats (Felis catus; 10 ± 2 months, 3.6 ± 0.3 kg). Cats randomly received each treatment for 14 days in a crossover design with a 14-day washout period between each diet. Three 22-h indirect calorimetry studies were conducted after acute (day 0), semichronic (day 4) and chronic (day 13) dietary exposure. Blood samples were collected after a 24-h fast on days 1, 5 and 14. When cats consumed the HC and HF diet, oxidation of the restricted nutrient exceeded intake while oxidation of the nutrient in excess matched intake. Mean max energy expenditure (EE) of cats consuming the HF and HC diet were 107 and 102 kcal/kg(0.67)/day and occurred at a mean of 4 and 12 h post-feeding respectively. Maximal fat (0.90 g/h) and carbohydrate (carbohydrate; 1.42 g/h) oxidation were attained at 26 min and 10.4 h post-feeding respectively. The changes observed in macronutrient oxidation and EE suggest that cats adapt whole-body nutrient metabolism in response to changes in dietary macronutrient content, but may require longer than 14 day to adapt to a macronutrient that is present at a lower concentration in the diet.

Keywords: carbohydrate; energy expenditure; fat; indirect calorimetry; oxidation.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed / analysis
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Carbohydrate Metabolism / drug effects*
  • Cats / blood*
  • Cats / metabolism
  • Cross-Over Studies
  • Diet / veterinary*
  • Dietary Carbohydrates / administration & dosage
  • Dietary Carbohydrates / pharmacology*
  • Dietary Fats / administration & dosage
  • Dietary Fats / pharmacology*
  • Fats / metabolism*
  • Female
  • Male
  • Oxidation-Reduction

Substances

  • Dietary Carbohydrates
  • Dietary Fats
  • Fats