Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9850-5. doi: 10.1021/am403136e. Epub 2013 Sep 19.

Abstract

Flexible free-standing CuO nanosheets (NSs)/reduced graphene oxide (r-GO) hybrid lamellar paper was fabricated through vacuum filtration and hydrothermal reduction processes. A unique three-dimensional nanoporous network was achieved with CuO NSs homogeneously embedded within the r-GO layers. This hybrid lamellar composite paper was examined as a binder-free anode for lithium ion batteries, and demonstrated excellent cyclic retention with the specific capacity of 736.8 mA h g(-1) after 50 cycles. This is much higher than 219.1 mA h g(-1) of the pristine CuO NSs and 60.2 mA h g(-1) of r-GO film at the same current density of 67 mA g(-1). The high capacitance and excellent cycling performance were generated from the integrated nanoporous structure compose of CuO NSs spaced r-GO layers, which offered an efficient electrically conducting channels, favored electrolyte penetration, and buffered to the volume variations during the lithiation and delithiation process. These outstanding electrochemical capabilities of CuO NSs/r-GO paper holds great promise for flexible binder-free anode for lithium ion batteries.

Publication types

  • Research Support, Non-U.S. Gov't