Nondestructive measurement of nuclear magnetization by off-resonant Faraday rotation

Phys Rev Lett. 2013 Aug 23;111(8):087603. doi: 10.1103/PhysRevLett.111.087603. Epub 2013 Aug 20.

Abstract

We report on the nondestructive measurement of nuclear magnetization in n-GaAs via cavity enhanced Faraday rotation. In contrast with the existing optical methods, this detection scheme does not require the presence of detrimental out-of-equilibrium electrons. Specific mechanisms of the Faraday rotation are identified for (i) nuclear spins situated within the localized electron orbits, these spins are characterized by fast dynamics, (ii) all other nuclear spins in the sample characterized by much slower dynamics. Our results suggest that even in degenerate semiconductors nuclear spin relaxation is limited by the presence of localized electron states and spin diffusion, rather than by Korringa mechanism.